數(shù)據(jù)挖掘技術(shù)在物流管理中的應(yīng)用
2012-3-7 15:06:00 來源:網(wǎng)絡(luò) 編輯:56885 關(guān)注度:摘要:... ...
數(shù)據(jù)挖掘技術(shù)在物流管理中的應(yīng)用
數(shù)據(jù)挖掘的主要方法包括基本統(tǒng)計(jì)分析、相關(guān)分析、回歸分析、時(shí)間序列分析、人工神經(jīng)網(wǎng)絡(luò)方法等。不同的分析方法和挖掘工具有其獨(dú)特的特征和使用范圍。
1.基本統(tǒng)計(jì)分析方法:統(tǒng)計(jì)學(xué)研究的對(duì)象是客觀事物的數(shù)量關(guān)系和數(shù)量特征。統(tǒng)計(jì)方法廣泛地運(yùn)用于各個(gè)領(lǐng)域,供各個(gè)部門做出決策、執(zhí)行計(jì)劃、檢查監(jiān)督和宏觀調(diào)控。尤其在物流管理領(lǐng)域,基本統(tǒng)計(jì)方法起著信息咨詢、監(jiān)督、輔助決策的作用。
統(tǒng)計(jì)分析方法從總體中抽取一定數(shù)量的樣本并測(cè)出有關(guān)的數(shù)據(jù)以及利用數(shù)據(jù)所提供的關(guān)于總體的信息來推斷關(guān)于總體的結(jié)論。目前企業(yè)內(nèi)部的相關(guān)海量數(shù)據(jù)或分散存儲(chǔ),或是異構(gòu)數(shù)據(jù),無法利用基本的統(tǒng)計(jì)方法進(jìn)行歸納推理。
2.相關(guān)分析:相關(guān)分析法是測(cè)定經(jīng)濟(jì)現(xiàn)象之間相關(guān)關(guān)系的規(guī)律性,并據(jù)以進(jìn)行預(yù)測(cè)和控制的分析方法。物流管理中的各個(gè)要素間存在著大量的相互聯(lián)系、相互依賴、相互制約的關(guān)系,一類是函數(shù)關(guān)系,它反映著要素之間嚴(yán)格的依存關(guān)系;另一類為相關(guān)關(guān)系,就是說變量之間存在看不確定、不嚴(yán)格的依存關(guān)系。
物流管理中的相關(guān)分析要解決以下問題:
(1)確定物流各個(gè)要素之間有無相關(guān)關(guān)系以及相關(guān)關(guān)系的類型:正相關(guān)關(guān)系或負(fù)相關(guān)關(guān)系;直線關(guān)系還是曲線相關(guān);一元相關(guān)還是多元相關(guān)。
(2)確定各個(gè)要素之間相關(guān)關(guān)系的密切程度,通常是計(jì)算相關(guān)系數(shù)。
(3)擬合回歸方程,如果要素間相關(guān)關(guān)系密切,就根據(jù)其關(guān)系的類型,建立數(shù)學(xué)模型用相應(yīng)回歸方程來反映這種數(shù)量關(guān)系。
(4)判斷回歸分析的可靠性,只有通過檢驗(yàn)的回歸方程才能用于預(yù)測(cè)和控制。
(5)根據(jù)回歸方程進(jìn)行預(yù)測(cè)和控制。如果變量數(shù)量比較多并且變量之間無法用線性關(guān)系來表示,那么相關(guān)分析就不能很好的反映出各變量之間的關(guān)系。
3.回歸分析:考察變量之間的數(shù)量變化規(guī)律,確定自變量和因變量之間的數(shù)學(xué)關(guān)系式,建立回歸方程,對(duì)回歸方程進(jìn)行各種統(tǒng)計(jì)檢驗(yàn),并能進(jìn)行預(yù)測(cè)。回歸分析按照涉及的自變量的多少,可分為一元回歸分析和多元回歸分析;按照自變量和因變里之間的關(guān)系類型,可分為線性回歸分析和非線性回歸分析。
在物流管理中回歸分析應(yīng)用的主要內(nèi)容為:
(1)從一組數(shù)據(jù)出發(fā)確定某些變量之間的定量關(guān)系式,并估計(jì)其中的未知參數(shù)。估計(jì)參數(shù)的常用方法是最小二乘法。
(2)對(duì)這些關(guān)系式的可信度進(jìn)行檢驗(yàn)。
(3)在多自變量共同影響一個(gè)因變量的關(guān)系中,判斷并將影響顯著的自變量選入模型中,而剔除影響不顯著的變量,通常用逐步回歸、向前回歸和向后回歸等方法。
回歸分析僅考慮到變量之間的數(shù)量變化規(guī)律,沒有考慮到變里之間由于時(shí)間等因素產(chǎn)生的不確定關(guān)系,這使得回歸分析,特別是線性分析,對(duì)于時(shí)間不敏感變量的檢驗(yàn)結(jié)果是可信的,對(duì)于時(shí)間敏感的變量的變化規(guī)律不能很好的表示。
4.時(shí)間序列分析:對(duì)按時(shí)間順序的一組數(shù)字序列應(yīng)用數(shù)理統(tǒng)計(jì)方法加以處理,以預(yù)測(cè)未來事物的發(fā)展。
時(shí)間序列分析是定量預(yù)測(cè)方法之一,它的基本原理:一是承認(rèn)事物發(fā)展的延續(xù)性,根據(jù)過去的變化趨勢(shì)預(yù)測(cè)未來的發(fā)展,前提是假定過去會(huì)同樣延續(xù)到未來;二是突出了時(shí)間因素在預(yù)測(cè)中的作用,因而存在預(yù)測(cè)誤差。當(dāng)外界發(fā)生較大變化,預(yù)測(cè)往往會(huì)有較大偏差,為此要利用加權(quán)平均法對(duì)歷史數(shù)據(jù)進(jìn)行處理。
時(shí)間序列預(yù)測(cè)法簡(jiǎn)單易行,便于掌握,中短期預(yù)測(cè)比長(zhǎng)期預(yù)測(cè)的效果好。
5.人工神經(jīng)網(wǎng)絡(luò):人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network.ANN)是一個(gè)由很多節(jié)點(diǎn)通過方向性連接組成的一個(gè)網(wǎng)絡(luò)結(jié)構(gòu),是基于模仿人的大腦的神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能而建立的一種具有學(xué)習(xí)能力的信息處理系統(tǒng)。ANN通過從過去的知識(shí)中學(xué)習(xí)、概括和抽取解決問題的經(jīng)驗(yàn)知識(shí),可以將這些知識(shí)進(jìn)行運(yùn)用。
ANN的優(yōu)點(diǎn)是:并行處理;非線性映射;自學(xué)習(xí)功能;高速尋找優(yōu)化解的能力。由于具有這些優(yōu)點(diǎn),ANN具有高度的非線性和極強(qiáng)的模糊推理能力,這是傳統(tǒng)數(shù)學(xué)分析方法無法比擬的。物流過程涉及的因素比較多,若僅用推理和建立數(shù)學(xué)模型的方法來解決物流管理中出現(xiàn)的問題是不夠的,還需依靠經(jīng)驗(yàn)和某些難以用公式表達(dá)的知識(shí),因此,ANN比較適合于解決復(fù)雜的物流管理問題。